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Özet: Modern uygulamalı matematiğin temel ve nihai amacı disiplinler arası işbirliğini teşvik ederek 
matematik ve matematik uygulamalarının biyoloji, kimya, mühendislik, yer bilimleri, nöro-bilim, fizik, 
finans ve diğer birçok bilim ve mühendislik dalları ile olan bağlarını ortaya çıkarmaktır. Modern uygu-
lamalı matematik alanındaki son gelişmeler, pek çok etkinin doğrusal olmayan davranış sergilediği 
gerçek yaşama ve doğal olaya ait problem ve olgunun daha iyi anlaşılması ve modellenmesine yöne-
lik gelecek vaadeden yöntemler sunmaktadır. Bu çalışmada amacımız, yukarıda bahsedilen temeller 
çerçevesinde, son zamanlarda geliştirilen, istatistiksel öğrenme, ters problemler ve çok amaçlı op-
timizasyon teorilerinden kaynağını alan ve parametrik olmayan bir regresyon ve sınıflandırma aracı 
olan konik çok değişkenli uyarlanabilir regresyon eğrileri ve türevlerinin çok farklı alanlardaki başarılı 
uygulamalarının tanıtılmasıdır.

Anahtar Sözcükler: Parametrik Olmayan Regresyon Eğrileri, Modern Sürekli Optimizasyon, MARS, 
CMARS.    

Recent Applications of Nonparametric Regression Splines in Science, Engineer-
ing and Finance within the Context of Modern Applied Mathematics and Modern 
Continuous Optimization

Abstract: The basic and ultimate goal of modern applied mathematics is to explore the connections 
between mathematics and its applications in biology, chemistry, engineering, geosciences, physics, 
neuroscience, finance and many other branches by fostering interdisciplinary collaboration. Recent 
advances in modern applied mathematics offer promising avenues for a better understanding and 
modelling of real-life problems and natural phenomena, where many effects often exhibit a nonlinear 
behavior. In this study, within the above mentioned context, we aim to represent the wide range of 
successful applications of our recently developed nonparametric classification and regression tool 
conic multivariate adaptive regression splines and its variations, which originates from statistical 
learning, inverse problems and multiobjective optimization theories.
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1. Giriş
Öğrenme görevinin temel amacı, eğitim verile-
rini (sonlu sayıdan oluşan gözlemler) kullanarak 
gelecekteki (test) veriler için bilinmeyen (belir-
leyici-tepki) bir bağımlılığı (veya modeli) iyi bir 
öngörü (genelleme) yeteneği ile tahmin etmektir. 
Regresyon girdi uzayından, X, çıktı uzayına, Y, 
bir eşleme öğrenmek olup, tahminleyici olarak 
adlandırılan bu eşleme, f, nicel çıktıları (                 ) 
tahmin etmek için kullanılır. Diğer yandan, sını-
flandırmanın temel amacı ise, özellikler uzayın-
dan, X, etiket uzayına, Y, bir eşleme öğrenmektir. 
Bu eşleme, f, ise nitel çıktıları (                        ) 
tahmin etmek için kullanılır ve sınıflandırıcı olarak 
adlandırılır. Öğrenme görevinin adlandırılması 
her ne kadar çıktı türüne bağlı olsa da, her ikisi 

de ortak özelliklere sahip olup, fonksiyon yak-
laşımı olarak kabul edilebilir [18].     
Temel bilimler, mühendislik, finans, enerji sek-
törü gibi pek çok alanda bağımlı (tepki) değişken 
ile bağımsız (belirleyici) değişkenler arasındaki 
ilişki çoğunlukla doğrusal olmayan davranış ser-
giler. Bu nedenle parametrik olmayan regresyon 
ve sınıflandırma yöntemleri veri madenciliği ve 
tahmin teorisinde çok yaygın olarak kullanılmak-
tadır [21]. 
Parametrik olmayan bir  regresyon ve sınıflan-
dırma yöntemli olan, ve Friedman [12] tarafından 
geliştirilen “çok değişkenli uyarlanabilir regre-
syon eğrileri – multivariate adaptive regression 
splines” (MARS) algoritması, doğrusal olmayan 
ve etkileşimli olayları otomatik modelleyen 

X = Rd ,  Y = 0,1{ }

X = Rd ,  Y = R
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doğrusal modellerin gelişmiş bir halidir. Hem 
sınıflandırma hem de regresyonda çok büyük bir 
öneme sahip olan MARS yöntemi özellikle çok 
sayıda değişkenin karmaşık ilişkilerinin model-
lendiği ekonomi, teknoloji ve bilim alanlarında 
başarı ile uygulanmaktadır.

MARS yöntemi regresyon modelini oluştururken 
ileri ve geri adım algoritması diye adlandırılan iki 
aşamalı bir algoritma kullanmaktadır. İlk aşama-
da en yüksek karmaşıklık düzeyine ulaşıncaya 
kadar temel fonksiyon (TF)’lar eklenerek model 
yapılandırılır. İlk aşamada kullanılan ileri adım 
algoritmasıyla elde  edilen model istenilenden 
daha karmaşık bir yapıya sahip olduğundan 
dolayı ikinci  aşamada geri adım algoritması ile 
modeldeki TF’ler sırasıyla elenerek optimum 
modele ulaşılmaktadır [13].

Sınıflandırma ve tahminleme ile ilgili  MARS’ta 
karşılaşılan bazı problemlerin giderilmesi ve 
mevcut yöntemlerin kullanım kolaylığı  ve/veya 
etkinliğinin artırılması yönünde gerçekleştirilmiş 
olan çalışmalar neticesinde MARS’a alternat-
if olarak “konik çok değişkenli uyarlanabilir re-
gresyon eğrileri – conic multivariate adaptive 
regression splines” (CMARS) geliştirilmiştir [31].
CMARS istatistiksel öğrenme, ters problem-
ler, sürekli ve çok amaçlı optimizasyon teorileri 
kullanarak geliştirilmiş bir yöntemdir. CMARS 
yöntemi MARS algoritmasının geri doğru adım 
aşamasını kullanmak yerine, cezalı hata kareler 
toplamını (PRSS) esas alarak, MARS modelini 
bir Tikhonov düzenleştirmesi (TR) [4] problemine 
dönüştürmekte ve bu problemi iç nokta yön-
temi’nin kullanımına imkan veren “konik karesel 
programlama – conic quadratic programming” 
(CQP) [3] ile çözmektedir. 

Bu çalışmada MARS, CMARS ve türevlerinin te-
mel bilim, mühendislik ve finans gibi farklı alan-
lardaki başarılı uygulamalarından örnekler veril-
erek, modern uygulamalı matematik ve modern 
sürekli optimizasyon alanlarında geliştirilen bu 
yöntemlerin kazandırdığı potansiyelin gelecek-
te nasıl kullanılabileceği konusuna ışık tutulaya 
çalışılmıştır.

Çalışmanın geri kalanı şu şekilde düzenlen-
miştir: Bölüm 2’de MARS ve CMARS algoritma-
larının matematik temelleri özetlenmiştir. MARS, 
CMARS ve türevlerinin farklı uygulamaları Bölüm 
3’te verilmektedir. Bölüm 4’te ise sonuçlar veril-
erek, gelecekteki potansiyel çalışma olanakların-
dan bahsedilmekte ve öneriler sunulmaktadır.

2. MARS ve CMARS Algoritmaları
Regresyon analizi, istatistiksel öğrenmede çok 

sayıda bağımsız değişkenin modellendiği ve 
analiz edildiği bir yöntemdir. Parametrik olmayan 
regresyon analiz türleri olan MARS ve CMARS, 
bağımlı değişken ve bağımsız değişkenler 
arasında yatan fonksiyonel ilişki hakkında her-
hangi bir özel varsayım yapmaz. Bu bölümde 
MARS ve CMARS algoritmaları [12, 13, 23, 31]’a 
dayanılarak özetlenip, aktarılmaktadır.

2.1. MARS Yöntemi
Değiştirilmiş yinelemeli bölümleme metodolojis-
ine dayanan MARS algoritması “sınıflandırma ve 
regresyon ağaçları - classification and regres-
sion trees” (CART)’ın bir uzantısıdır ve her ikisi de 
iki simetrik TF’in düğüm yerinde oluşturulduğu 
aralıkların bölünmesi işlemi açısından benzerdir. 
Bununla birlikte, MARS algoritması sürek-
li parçalı doğrusal fonksiyonları kullanılır ve 
doğrusal olmaya ilişkileri daha etkili modelleye-
bilen sürekli bir model oluşturur. TF’lerin seçimi 
veriye dayalı ve çalışılan probleme özgü olup, bu 
da MARS’ı çok boyutlu problemlerin çözümünde 
uyarlanabilir bir regresyon tekniği yapmaktadır. 
MARS modeli oluşturulurken, kısmi doğrusal 
TF’ler bağımlı değişkeni belirlemek için bağımsız 
değişkenlerin katkısal ve etkileşimli etkilerini dik-
kate alacak şekilde birbirine eklenir.

MARS aşağıdaki kesik kısmi doğrusal baz 
fonksiyonlarının açılımlarını kullanır:

Yukarıdaki ifadede,   tek değişkenli düğüm nok-
tası olup (          ), bu iki fonksiyon yansıyan çift 
olarak adlandırılır ve ‘+’ simgesi sadece pozitif 
parçaların kullanıldığını, aksi halde sıfır olduğunu 
gösterir. Genel regresyon modelindeki bağımsız 
değişkenler ile bağımlı değişken arasındaki ilişki 
aşağıdaki ifadeyle tanımlanır:

τ

Burada Y bağımlı değişkeni, 
bağımsız değişkenler vektörünü,   ise ilave  sıfır 
ortalama ve sonlu varyansa sahip stokastik 
bileşeni göstermektedir. MARS’ın arkasında 
yatan mantık, p-boyutlu düğüm noktasına
                                     sahip her bağımsız değişken    
(                      )için, o model girdisine ait her 
bir veri vektöründe   yansımalı çiftler üretmektir. 

(1)
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Dolayısıyla, MARS’taki 1-boyutlu TF’ler toplu-
luğu aşağıdaki şekilde verilmektedir:

(2)

(3)

(5)

(4) (6)

(7)

Yukarıda N toplam gözlem sayısını, p girdi 
uzayının boyutunu göstermektedir. İfade (1)’de 
yer alan         ,  C kümesince art arda oluşturulan 
ve     kesişim noktalı doğrusal bir kombinasyon 
olarak aşağıdaki şekilde ifade edilebilir:

f !X( )
β0

β0

İfade (3)’de, Bm C kümesinden bir TF ya da 
iki veya daha fazla TF’in çarpımı olup, M adet 
doğrusal olarak bağımsız TF’ler kümesinden 
alınmıştır. Burada    , fonksiyonuna katkıda bu-
lunan   ’in alt vektörü olup,   minci TF’in bilin-
meyen katsayısını veya sabiti   temsil etmekte-
dir. Varolan bir TF’i başka bir değişkeni içeren 
diğer bir yansıyan çiftle çarparak, farklı bağımsız 
değişkenler arasındaki etkileşimi tanımlayan yeni 
bir TF üretilerek, hem var olan TF’ler hem de yeni 
oluşturulan TF’ler modele dahil edilir. Bu yolla 
yüksek boyutlarda eğrilerin eklenmesi sağla-
narak aşağıdaki ifadeyle verilen çok değişkenli 
eğri TF’leri oluşturulur:

X

Yukarıda verilen İfade (4)’de, minci TF’de çarpılan 
toplam kesikli doğrusal fonksiyonların sayısı Km 
ile, minci TF’de yer alan kıncı kesikli doğrusal 
fonksiyona ait bağımsız değişken      ile,    için 
belirlenen düğüm noktası ise   ile belirtilmekte 
olup, son olarak

MARS yöntemi regresyon modelini oluştururken 
ileri ve geri adım algoritması diye adlandırılan iki 
aşamalı bir algoritma kullanmaktadır. İlk aşama-
da en yüksek karmaşıklık düzeyine ulaşıncaya 
kadar temel fonksiyonlar eklenerek model 
yapılandırılır. İlk aşamada kullanılan ileri adım 
algoritmasıyla elde  edilen model istenilenden 
daha karmaşık bir yapıya sahip olduğundan 
dolayı ikinci  aşamada geri adım algoritması ile 
modelin tahmin etme yeteneğine katkısı yetersiz 
olan TF’ler sırasıyla elenerek optimum modele 
ulaşılmaktadır. 
Yukarıda anlatınlar işlemler sonucunda elde 

edilen model serilerinden, optimum terim sayısı-
na,  , sahip en iyi tahmin etme performansını 
veren model,    ,  aşağıda verilen “genelleştirilmiş 
çapraz doğrulama - generalized cross valida-
tion” (GCV) prensibine dayanılarak bulunur:

s
κ j
m ∈ ±1{ }

Burada  örnek gözlem sayısını,                      il-
eri adımda seçilen düğüm noktası sayısını,  .  
modeldeki doğrusal olarak bağımsız fonksiyon 
sayısını,  ise her bir TF’in optimize edilme mali-
yetini vermekte olup, genellikle         alınmaktadır 
(model eklemeli olduğunda         kullanılır).

2.2. CMARS Yöntemi
Şu ana kadar tartışıldığı üzere, MARS iki algor-
timadan oluşmaktadır; ileri adım ve geri adım, 
ve bu iki algoritma ile iki farklı önemli işlevi aynı 
anda yerine getirmektedir: (i) hem veriye daha iyi 
uyan bir model oluşturmakta,  (ii) hem de modeli 
mümkün olduğunca basitleştirmektedir. 
CMARS yönteminde ise, MARS’ın geri adım al-
gortimasını kullanmak yerine, ileri adımda elde 
edilen      adet TF’ler alınarak en küçük kareler 
kestirimine ceza terimleri eklenmekte, ve bu yol-
la kestirimin karmaşıklığı (doğruluk) ve tutarlılığı 
arasındaki ödünleşmeye yeni bir yaklaşım getir-
ilmektedir. MARS’ın ileri adım aşamasında elde 
edilen PRSS aşağıda verilmektedir:

d
d = 3

d = 2

Mmax

İfade (6)’da,             minci TF’le ilgili değişken 
kümesini,                    minci TF’e katılan değişken-
ler vektörünü,     ceza parametrelerini,   ise uy-
gun integral alanlarını belirtmektedir. Son olarak,      

için                         ve 
Bu optimizasyon probleminde doğruluk ve kar-
maşıklık arasındaki ödünleşme ceza parametrel-
eri        yoluyla kurulmakta olup, ayrıklaştırma 
ile çok değişkenli integral               , yaklaşım 
gerçekleştirildikten sonra, İfade (6)’daki PRSS 
aşağıdaki şekilde yazılmaktadır:

Burada,                     bağımlı değişken vektörü,    

ise  boyutundaki matris, ve son olarak da        Öklit 
normudur.

y := y1, y2 ,K…, yn( )
T

•
2

2
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İfade (7)’deki her bir türev için farklı ceza para-
metresi kullanmak yerine, aynı ceza parame-
tresi                        kullanıldığında, PRSS aşağıdaki 
forma dönüşmektedir:

(8)

(9)

(10)

Yularidaki ifadede,     diyagonal 
boyutunda matrisi,   ise veri noktalarınca ke-
stirimi yapılan                 boyutundaki parametre 
vektörünü vermektedir. 
İfade (8)’deki TR problemi, bir sürekli, aslın-
da, dışbükey optimizasyon tekniği olan CQP 
kullanılarak, uygun bir  sınırlama ölçütü        ile 
aşağıda verilen şekilde çözülebilmektedir: 

Bu noktada,   için sınırlama değerlerinin elde 
edilebilmesi için, dikkatli bir öğrenme süreci 
takip edilmelidir. Sürekli optimizasyon teknikler-
inin modern yöntemleri uygulandığında, CQP 
aşağıdaki temel gösterimle ifade edilebilir:

3. MARS, CMARS ve Türevlerinin Uygulama 
Alanları
Bölüm 2.1’de ayrıntıları verilen MARS yöntemi-
nin, bilim ve mühendislik alanlarında çok varklı 
disiplinler tarafından gerçekleştirilmiş başarılı 
uygulamaları bulunmaktadır. Deichmann v.d. 
[10] tarafından yapılan finans alanındaki doğru-
dan pazarlama uygulamaları, Leathwick v.d. 
[19]’nin gerçekleştirdiği ekolojide çevre ve türler-
in dağılımı arasındaki ilişkilerin incelenmesi, 
Krzyścin v.d. [15]’nin jeofizik alanında atmosferik 
içerik ve dinamiklerin modellenmesi çalışması, 
Kuter v.d. [17], [18] tarafından yapılan uzaktan 
algılamada uydu görüntülerindeki atmosferik et-
kilerin modellenmesi ile, Quirós v.d. [26] ve Kuter 
[16]’in çok spektralı uydu görüntülerinin sınıflan-
dırılması, Anaklı [2]’nın kalite verilerinin tahmin ve 
sınıflandırma modellerinin geliştirilmesi çalışma-
ları bu uygulamalara örnek olarak verilebilir. 

Ancak MARS veriye uyum ve modelin kar-
maşıklığını dengelemede katı bir yaklaşım izle-
mektedir. Bölüm 2.2’de özetlenen CMARS 
yaklaşımı bu konuda kullanıcıya esneklik sağla-
maktadır. CMARS yer alan optimizasyon proble-
mindeki sınırların çok amaçlı optimizasyon yak-
laşımı [27] kullanılarak belirlenmesiyle çok sayıda 

alternatif çözüm elde edilebilmektedir. Böylece 
kullanıcının amacına en uygun çözüme ulaşıl-
ması hedeflenmektedir [29]. Yapılan çalışmalar-
da MARS ve CMARS metodlarının performan-
sları çeşitli ölçütler kullanılarak karşılaştırılmıştır. 
Karşılaştırma sonuçları CMARS çözümleri-
nin MARS’a göre bir çok ölçüt bakımından 
başarımının yüksek olduğunu göstermiştir [31, 
33].

Weber v.d. [31] ve Yerlikaya-Özkurt [33] tarafın-
dan yapılan üretimde  kalite kontrolüne yönelik 
veri madenciliği çalışmaları, Özmen v.d. [22]’nin 
yağış verisinin modellenmesi, Alp v.d. [1] ve We-
ber v.d. [32]’in kredi temerrüt olasılıklarının tah-
minine yönelik çalışmaları, Yılmaz v.d. [35]’ce 
yapılan doğal gaz talebinin tahmini, Taylan v.d. 
[28] ile Taylan ve Weber [30]’in finans, ekonomi 
ve çevresel süreçlerle ilgili çalışmaları, Yer-
likaya-Özkurt v.d. [34]’nin yer hareketlerinin tah-
minine yönelik alternatif modelleme ve Kuter v.d. 
[17]’nin yapmış olduğu uydu görüntüleri üze-
rindeki atmosferik etkilerin giderilmesine yönelik 
çalışmalar CMARS uygulamalarına örnek olarak 
verilebilir. 

CMARS’ta MARS’ın ileri adım algoritmasın-
da en yüksek karmaşıklık düzeyinde oluşturu-
lan model kullanıldığından, CMARS çok sayıda 
değişken kullanılmasından kaynaklanan bir kar-
maşıklığa sahiptir. Bu karmaşıklığı azaltmak için 
genelleştirilmiş kısmi doğrusal modeller (GPLMs) 
[20] analiz edilmiş [9, 14] ve sürekli bir regresyon 
modeli CMARS ile kesikli bir regresyon modeli 
lojistik regresyon’un katkıları kullanılarak kon-
ik genelleştirilmiş kısmi doğrusal model (CG-
PLM) geliştirilmiştir [32]. Bu yöntem bağımsız 
değişkenleri iki kısma ayırarak, klasik doğrusal 
modellerle doğrusal olmayan modelleri ekleme-
li olarak birleştirip CMARS algoritmasında çok 
sayıda değişken kullanılmasından kaynaklanan  
karmaşıklığın azalmasını sağlamıştır. 

MARS ve CMARS yöntemleri bağımsız değişken-
lerin sabit olduğunu varsaymaktadır  fakat 
gerçek yaşam verilerinin tümünde, yani hem gir-
di hem de çıktı değişkenlerinde, belirsizlik bulun-
maktadır. Buna ek olarak, veriler optimal deney 
tasarımının içindeki çeşitliliklerden kaynaklanan 
küçük değişimlere de maruz kalabilirler. Tüm 
bunlar amaç fonksiyonu ve olası kısıtlarda da 
belirsizliklere neden olabilmektedir. Bu nedenler 
sonucunda optimizasyon probleminin çözümleri 
problem değişkenlerindeki belirsizliklere karşı 
kayda değer bir duyarlılık gösterebilmektedir. 
Bu zorluğu aşabilmek için CMARS modeli ve 
algoritması, verilerdeki belirsizlikleri ele alacak 
şekilde yeniden yapılandırılmış; çok düzlemli ve 
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elipsoidal belirsizlik kümeleri esas alınarak Ben-
Tal ve Nemirovski [5-7]  ile El Ghaoui ve Lebret 
[11] tarafından geliştirilmiş sağlam optimizasyon 
yöntemi kullanılarak sağlamlaştırılmıştır [21, 24].
Sağlam optimizasyon, verileri belirsiz (rasgele) 
olan ve aykırı gözlemler dışındakilerin sadece 
bazı belirsizlik kümeleri içerisinde tanımlı old-
uğu optimizasyon problemlerini ele alan bir 
yöntemidir [8]. Bu yöntemle verilerin belirsizlik 
içermesi durumunda tahmin varyansı küçültülm-
eye çalışılmaktadır. Bilgisayar hesaplamalarında 
sağlamlaştırılan CMARS modelimizin daha ba-
sit bir şekline gerek duyulduğundan “zayıf bir 
sağlamlaştırma” kavramı da oluşturulmuştur. 
Böylece hem sağlam CMARS (RCMARS) hem 
de bunun değiştirilmiş hali olan zayıf sağlam 
CMARS (WRCMARS)’ın teorik olarak geliştir-
ilmesi açıklanıp, yöntem tanıtılmış ve yöntemin 
duyarlılığı araştırılmıştır [24, 25]. Bu çalışmalar-
da, verilerde varolan belirsizliklerin üstesinden 
gelebilmek amacı ile sağlam ve zayıf sağlam 
olarak isimlendirilen kombinatoriyel yaklaşım 
kullanılarak CMARS sağlamlaştırılmıştır. Bu yak-
laşımla parametrelerin tahmin varyanslarının 
indirgendiği yapılan similasyon çalışması sonu-
cunda gözlemlenmiştir [21].

4. Sonuç ve Öneriler
Parametre dışı ve etkileşime sahip çok değişken-
li davranışların sıklıkla hakim olduğu gerçek 
yaşam ve doğadaki süreç ve olguların modellen-
mesinde çok boyutluluğun getirdiği dezavanta-
jlar çoğu zaman baskın gelebilmektedir. Başka 
bir deyişle, bu tür veriler üzerinde yüksek dere-
celi polinomlar kullanarak çalışmak zordur. Diğer 
taraftan, regresyon eğrilerini kullanmak bize her 
boyutta polinom parçalarının derecelerini old-
ukça düşük tutma imkanı sağlamaktadır. Regre-
syon eğrileri aslında çok boyutlu karmaşık veri 
yapılarına yaklaşmak için oldukça “esnek” tir. 
Ayrık veriye “yumuşak” bir şekilde yaklaşımda 
bulunduklarından dolayı, genellikle “yumuşatma 
eğrileri” olarak da adlandırılırlar.  

CMARS’ta kullandığımız eğriler ise, birinci ve 
özellikle ikinci dereceden kare türevlerinin (diğer 
bir deyişle, karmaşıklıklarının) integrallerinin 
cezalandırılarak salınımlarının kontrol altında 
tutulmasından dolayı daha da “yumuşaktır”. 
Daha sonrasında, bu integraller ayrıklaştırılarak 
TR programı elede edilmekte ve CQP biçiminde 
sunulmaktadır. 

Şu ana kadar yapmış olduğumuz ve Bölüm 3’te 
özetlemiş olduğumuz çalışmalarımız, CMARS ve 
türevlerinin bilim ve mühendisliğin çok farklı dal-
larında alternatif bir regresyon ve sınıflandırma 
aracı olarak kullanılabileceğini göstermektedir. 

Modern uygulamalı matematik ve modern sürek-
li optimizasyon alanlarındaki bilimsel ilerlemelere 
ait dinamik süreçlerin diğer bilim ve mühendis-
lik alanlarıyla entegre bir şekilde kullanılması hiç 
şüphesiz karmaşık verilerin içsel yapılarını daha 
iyi anlayabilmemiz ve daha iyi modeller oluştara-
bilmemizde önemli rol oynayacaktır.
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